Abstract

A new sodium-ion conducting thin-film polymer electrolyte based on the poly(ethylene oxide) (PEO) system has been prepared by a solution-casting method. Characterization by XRD, IR, and AC conductivity and Wagner's polarization were carried out on these thin-film electrolytes. From the transference number experiment it was found that the charge transport in these electrolytes is mainly due to ions. Conductivity studies show that the conductivity value of the PEO:NaClO3 complex increases with the increase of salt concentration. An increase in the conductivity and a change in the cell parameters for the electrolyte system were found by the addition of the low molecular weight dimethylformamide or propylene carbonate as plasticizers. The cell parameters of these electrolyte systems were measured from a discharge study of the cell with the application of a load of 100 kΩ at room temperature in the common cell configuration Na|electrolyte|MnO2. The open circuit voltage ranges from 2.02 V to 2.46 V and the short circuit current ranges from 570 µA to 1030 µA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call