Abstract
AbstractNanoscale poly(vinyl alcohol) (PVA) fiber (100–500 nm) aggregates were prepared with an electrospinning technique. Additionally, a chemical crosslinking method was used to crosslink the nanoscale PVA fiber aggregates. Differential scanning calorimetry, wide‐angle X‐ray diffraction, and scanning electron microscopy techniques were employed to characterize the PVA fiber aggregates. The different crosslinking densities of the PVA fiber aggregates were obtained through the control of the weight percentage of glyoxal to PVA. The crosslinking densities due to heat treatment and chemical crosslinking were studied. The influence of heat treatment could be neglected in contrast to chemical crosslinking when the curing temperature was 120 °C. The primary factor that affected the crosslinking density was the volume of the chemical crosslinking agent. The results showed that the properly crosslinked PVA fiber aggregates had better antiwater solubility and mechanical properties than the noncrosslinked PVA fiber aggregates. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1261–1268, 2002
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.