Abstract

ABSTRACT Tumor necrosis factor alpha (TNFα) is an important inflammatory factor. It plays a cardinal role in inflammatory synovitis and articular matrix degradation, and is, therefore, a prime target for directed immunotherapy in autoimmune diseases. In this study, we screened and isolated the B cells secreting anti-TNFα antibody from patients with rheumatoid arthritis. The heavy-chain and light-chain sequences of the antibody were cloned and used to generate a stable Chinese hamster ovary (CHO) cell line producing the antibody, which was named Haidalimumab. Haidalimumab showed a TNFα binding affinity comparable to that of the antibody Humira, which is the best TNF inhibitor on the market. Furthermore, Haidalimumab could effectively neutralize recombinant human tumor necrosis factor alpha (rhTNFα) toxicity in a C57BL/6 mouse model and showed significant therapeutic effect in a tumor necrosis factor transgenic (TNF-Tg) mouse arthritis model. In conclusion, we developed a high-affinity, fully human anti-TNFα antibody with low immunogenicity that could potentially have significant therapeutic applications in rheumatoid arthritis or other autoimmune diseases. Abbreviations: ELISAenzyme linked immunosorbent assayRArheumatoid arthritisSDS-PAGEsodium dodecyl sulfate polyacrylamide gel electrophoresisrhTNFαrecombinant human tumor necrosis factor-alphaEC50concentration for 50% of maximal effectTNF-Tg micetumor necrosis factor transgenic miceAMDactinomycin DMTTmethylthiazolyldiphenyl-tetrazolium bromidePBSphosphate‐buffered saline

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.