Abstract

In this work, β-sialon ceramics were prepared from high-aluminium fly ash via carbothermal reduction-nitridation (CRN) and the physicochemical properties of the materials such as bulk density, apparent porosity, water absorption and flexural strength were also discussed. The results showed that the percentage of β-sialon phase in the product decreases as the temperature increases from 1400°C and the weight of the sintered specimen experienced an increase during 1350°C~1450°C due to the nitridation reactions, and followed by a gradual decrease till 1550°C for the decomposition of β-sialon. It is indicated that the optimum sintering temperature to obtain the highest yield of β-sialon ~93% lies in 1400°C~1450°C. The SEM images revealed that the prepared β-sialon sintered at 1400°C were mainly in shape of elongated prisms, typically ~5μm in length and 0.5~1μm in width. As the temperature increased to 1500°C and above, β-sialon decomposed and the new phases of SiC and AlN were formed at 1550°C as confirmed by XRD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.