Abstract

Three in vitro methodologies were evaluated as models for the analysis of drug release from controlled release (CR) microparticulates for inhalation. USP Apparatus 2 (dissolution model), USP Apparatus 4 (flow through model) and a modified Franz cell (diffusion model), were investigated using identical sink volumes and temperatures (1000 ml and 37 °C). Microparticulates containing DSCG and different percentages of PVA (0%, 30%, 50%, 70% and 90%) were used as model CR formulations. Evaluation of the release profiles of DSCG from the modified PVA formulations, suggested that all data fitted a Weibull distribution model with R 2 ⩾ 0.942. Statistical analysis of the t d (time for 63.2% drug release) indicated that all methodologies could distinguish between microparticles that did or did not contain PVA (Students t-test, p < 0.05). However, only the diffusion model could differentiate between samples containing different PVA percentages. Similar results were observed when analysing the data using similarity and difference factors. Furthermore, analysis of the release kinetic profiles for all samples suggested the data fitted the Higuchi diffusion model ( R 2 ⩾ 0.862 for the diffusion methodology data set). Due to the relatively low water content in the respiratory tract and the lack of differentiation between formulations for USP Apparatus 2 and 4, it is concluded that the diffusion model is more applicable for the evaluation of CR inhalation medicines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call