Abstract

Chitosan membranes, aimed at biomedical applications, were prepared by a solvent casting methodology. Crosslinking was previously performed in acetic acid solution with glutaraldehyde, in order to obtain different degrees of crosslinking. Some membranes were neutralised in a NaOH solution. Mechanical tensile tests comprised quasi-static experiments at constant stress rate and temperature sweep dynamic mechanical analysis tests. This included measurements with the samples immersed in isotonic saline solution at 37 degrees C, in order to simulate physiological conditions, that were performed using a specific liquid container. It was observed that for higher crosslinking levels the membranes become stiffer but their strength decreases; these results are in agreement with swelling tests, also performed at body temperature. All the membranes exhibited similar and significant damping properties in wet conditions, which were stable in a broad temperature range. Weight loss measurements showed that the developed membranes degrade slowly up to 60 days. Cytotoxicity screening, using cell culture tests, showed that eventually such materials could be adequate for use in biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.