Abstract

Since Zwilling and co-workers first introduced the electrochemical anodization method to prepare TiO2 nanotubes in 1999, it has attracted a lot of researches due to its outstanding gas response and selectivity, making it widely used in gas detection field. This review presents an introduction to the sensor applications of TiO2 nanotube arrays (TNTAs) in sulfur hexafluoride (SF6)-insulated equipment, which is used to evaluate and diagnose the insulation status of SF6-insulated equipment by detecting their typical decomposition products of SF6: sulfur dioxide (SO2), thionyl fluoride (SOF2), and sulfuryl fluoride (SO2F2). The synthesis and sensing properties of TiO2 nanotubes are discussed first. Then, it is followed by discussing the theoretical sensing to the typical SF6 decomposition products, SO2, SOF2, and SO2F2, which analyzes the sensing mechanism at the molecular level. Finally, the gas response of pure and modified TiO2 nanotubes sensor to SO2, SOF2, and SO2F2 is provided according to the change of resistance in experimental observation.

Highlights

  • Titanium dioxide (TiO2) nanotube has been widely researched due to its distinguished properties, including high surface-to-volume ratios, high surface activity, strong catalytic activity, and high ultraviolet light adsorption and heat conductivity [1,2,3]

  • Pure TiO2 the gas response of TiO2 nanotube arrays (TNTAs) to SO2, SOF2 and SO2F2 are discussed at 200 °C, and the negative value of resistance variation (R%) means the reduction of resistance

  • In order to evaluate and diagnose the insulation status of SF6-insulated equipment, TNTAs gas sensor becomes an effective new method to realize the function by detecting the decomposition components of SF6: SO2, SOF2, and SO2F2

Read more

Summary

Introduction

Titanium dioxide (TiO2) nanotube has been widely researched due to its distinguished properties, including high surface-to-volume ratios, high surface activity, strong catalytic activity, and high ultraviolet light adsorption and heat conductivity [1,2,3]. The surface modification of TiO2 nanotubes is analyzed by experimental study to enhance the gas detection response. Due to the outstanding properties, high surface area, ordered alignment, and morphology adjustability of TiO2 nanotubes, it shows great potential in gas detection.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.