Abstract

Abstract The use of palladium nanoparticles embedded in a chloromethylated Polysulfone (CMPSf) matrix was developed for highly efficient oxidation of primary and secondary alcohols to corresponding aldehyde and ketone in organic solvent free condition. Pd (Π)/bis (2, 4-dihydroxybenzaldehyde) chelate chemically incorporated onto CMPSf was used to prepare beneficial catalytic membranes. Chemical structure and thermal properties of resulting membranes were characterized via FTIR, 1HNMR, UV-vis, TGA and DSC techniques. Morphology and particle distribution throughout the catalytic membranes was elucidated using FE-SEM. An average particle size of Pd nanoparticles was estimated about 20 nm by XRD technique. ICP technique proved that no Pd particles were leached out of the membrane into the solutions; hence the as-prepared catalytic membranes could be used several times without significant loss in their activities. This is in good accordance with formation of chemical bond between Pd and polymer matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call