Abstract

A novel nano petal-shaped covalent organic frameworks modified magnetic polystyrene-divinylbenzene-glycidylmethacrylate (NP-COF@Mag-PS/DVB/GMA) microsphere has been synthesized. It is a perfect combination of high productivity of PS/DVB/GMA microspheres and excellent enrichment efficiency of COF particles, and the excellent properties of NP-COF@Mag-PS/DVB/GMA microspheres are characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and X-ray photoelectron spectroscopy (XPS). The sorbent can extract illicit drugs via the reverse-phase interactions provided by benzene ring on the polymer backbone and the hydrogen bonding interactions provided by functional group (-NH-) on the COF particles. Based on using NP-COF@Mag-PS/DVB/GMA as sorbents, an easiness-to-handle of magnetic dispersive solid phase extraction (Mag-dSPE) procedure is proposed for the simultaneous preconcentration of 12 illicit drugs from wastewater. The obtained results show high extraction efficiency of NP-COF@Mag-PS/DVB/GMA to illicit drugs with recoveries between 81.6 and 116%. Furthermore, a liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS) method for the determination of 12 illicit drugs from wastewater at sub-ppt levels has been proposed and validated with the pretreatment of samples by Mag-dSPE. The limits of quantification (LOQs) for the 12 illicit drugs are between 0.40 and 4.90 ng/L. Validation results on linearity, specificity, trueness and precision, as well as on application to the analysis of 12 illicit drugs in ten real samples demonstrate the applicability to environment monitoring analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.