Abstract

Molecular electronics offers a potential solution for the miniaturization of electronics beyond conventional silicon electronics. A key goal of molecular electronics is to fabricate the single-molecule junction with the functions of electronic units. The term "molecular junction" means a molecular cluster or a single molecule incorporated between two microelectrodes, and electrons are transported across it. The methods of constructing molecular junctions dynamically were developed, such as STM-BJ, AFM-BJ, and MCBJ, providing precise control of the gap and easy measurement of thousands of junctions. Electrodes based on these techniques are commonly called microelectrodes because at least one dimension is on the micron scale. In this manuscript, we summarize the preparation methods of microelectrodes and their application in single-molecule measurements. In addition, we discuss the electrode factor that influences the molecular electrical properties, such as material, curvature radius and cone angle, and further provide a brief prospect of molecular electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.