Abstract

Microcapsules with toluene-di-isocyanate (TDI) as core and paraffin as shell for self-healing of concrete were prepared using melt condensation method, and the effects of preparation temperature, agitation rate and paraffin/TDI mass ratio on core fraction of microcapsules were studied. The size distribution and morphology of microcapsules were characterized by laser particle size analyzer and scanning electron microscopy (SEM). Components of the microcapsules were analyzed by Fourier transform infrared spectrometer (FTIR). Finally, the effect of microcapsules on self-healing ability of mortars was evaluated, which indicated that preparation temperature, agitation rate and paraffin/TDI mass ratio had significant effect on core fraction of microcapsules. The optimum microcapsules could be prepared with a paraffin/TDI mass ratio 1:2 and an agitation rate 600 rpm at 75 °C. The core fraction of microcapsules prepared with optimum parameters was 66.5%, and the particle size was between 30 and 300 µm, mainly concentrated on 90 μm. SEM showed that the microcapsules were regular spheres and the shell thickness was about 1/10 of the diameter. FTIR confirmed that the TDI was successfully encapsulated in the paraffin shell. Compared with the control mortar, compressive strength of the mortar with 3% microcapsules (by mass of cement) increased by 28.2%. The reserved ratio of compressive strength was 77.2% under 60% fc0 pre-load after 48 h self-healing. The cracks with a width of less 0.4 mm on the mortar were rapidly self-healed by the microcapsules in 6 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.