Abstract
A novel molecularly imprinted polymer (MIP) monolith for highly selective extraction of cholecystokinin (CCK) neuropeptides was prepared in a micropipette tip. The MIPs were synthesized by epitope imprinting technique and the polymerization conditions were investigated and optimized. The synthesized MIPs were characterized by infrared spectroscopy, elemental analyzer and scanning electron microscope. A molecularly imprinted solid-phase microextraction (MI-μ-SPE) method was developed for the extraction of CCK neuropeptides in aqueous solutions. The parameters affecting MI-μ-SPE were optimized. The results indicated that this MIP monolith exhibited specific recognition capability and high enrichment efficiency for CCK neuropeptides. In addition, it showed excellent reusability. This MIP monolith was used for desalting and enrichment of CCK4, CCK5 and CCK8 from human cerebrospinal fluid prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, and the results show that this MIP monolith can be a useful tool for effective purification and highly selective enrichment of multiple homologous CCK neuropeptides in cerebrospinal fluid simultaneously. By employing MI-μ-SPE combined with HPLC-ESI-MS/MS analysis, endogenous CCK4 in human cerebrospinal fluid was quantified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.