Abstract

The composites of covalent organic frameworks (COFs) and silica gel have been considered to be promising chromatographic separation materials due to the distinct advantages such as large specific surface area, good mechanical strength and high porosity. In the present study, a novel imine-linked COF@silica composite was prepared by in-situ growth of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 2,5-dihydroxyterephthalaldehyde (DHTA) monomers on the surface of aminated silica gel (SiO2–NH2). The successful surface-modification of TAPT-DHTA-COF distinctly enhanced the separation selectivity and efficiency of SiO2–NH2. Multiple types of analyte-stationary phase interactions contributed to the selective retention of structurally similar analytes. The designed TAPT-DHTA-COF@SiO2 was observed to effectively separate hydrophobic phenyl ketones, phthalate esters and steroid hormones. Moreover, the polar amino and hydroxyl groups of TAPT-DHTA-COF facilitated the selective determination of hydrophilic nucleosides/bases. The kinetic performance and thermodynamic behavior of TAPT-DHTA-COF@SiO2 column were particularly explored. It was found that column efficiency was mainly affected by the mass transfer resistance, and the retention of nucleosides/bases on the TAPT-DHTA-COF@SiO2 column was temperature dependent. The developed versatile TAPT-DHTA-COF@SiO2 column was finally applied for detecting environmental hormones as well as water-soluble nicotinamide in real samples. In summary, the potential application of TAPT-DHTA-COF@SiO2 composite material for liquid chromatographic separations was first explored and verified. The TAPT-DHTA-COF@SiO2 was proved to be a promising chromatographic separation material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call