Abstract

Heparin-like membranes (CPBS) with nanofibers (approximate diameters of 100–500 nm) were prepared through electrospinning of a blended solution of carboxymethyl chitosan nanoparticle (CMCN, diameters 483 nm) and poly (vinyl alcohol) (CMCN/PVA) onto the surface of modified bacterial cellulose sulfate (BCS) membranes. SEM images confirmed that the CMCN were stretched to nanofibers during electrospinning. The presence of BCS on the collector of electrospinning machine increased the spinnability of CMCN/PVA solution. FTIR and XPS measurement revealed that there were SO3−, COO−, and OH groups on the surface of CPBS membrane, expressing structural similarity to heparin. CPBS membranes maintained hydrophilicity and the glutaraldehyde crosslinked CPBS membrane was stable in water. The clotting time and platelet adhesion experiments expressed the anticoagulant properties of CPBS. The APTT, TT and PT of CPBS increased up to 116.0%, 189.8%, and 50% than those of the plasma, (67.4 s, 16.2 s, and 48.4 s, respectively). No platelets adhered onto the surface of CPBS. An inflammatory response was determined according to activation of the macrophages seeded onto the membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.