Abstract

In this study, the coaxial nanofiber films were prepared by coaxial electrospinning technique with cinnamaldehyde (CMA) and tea polyphenol (TP) as core material and polylactic acid (PLA) as shell material, and to obtain food packaging materials with great physicochemical and antibacterial properties, zinc oxide (ZnO) sol were added into PLA, and ZnO/CMA/TP-PLA coaxial nanofiber films were prepared. Meanwhile, the microstructure and physicochemical properties were determined, and the antibacterial properties and mechanism were investigated with Shewanella putrefaciens (S. putrefaciens) as target. The results show that the ZnO sol makes the physicochemical properties and antibacterial properties of the coaxial nanofiber films improve. Among them, the 1.0 % ZnO/CMA/TP-PLA coaxial nanofibers have smooth and continuous uniform surfaces, and their encapsulation effect on CMA/TP and antibacterial properties are the optimal. The synergistic action of CMA/TP and ZnO sol cause severe depression and folding of the cell membrane of S. putrefaciens, makes cell membrane permeability increase and of intracellular materials spillage, interference the bacteriophage protein expression, and makes macromolecular protein degraded. In this study, the introduction of oxide sols into polymeric shell materials by in-situ synthesis technique can provide theoretical support and methodological guidance for the application of electrospinning technology in the field of food packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.