Abstract

Catalytic reforming for hydrogen production is a bridge to sustainable energy. Coking is a big challenge for the industrialization of DRM. The key is to maintain a balance between the formation rate of *C and that of *O. A novel preparation strategy of Ni-Co nano alloy catalysts was proposed with microemulsion coupling with antisolvent extraction strategy.The prepared nanoparticles were highly dispersed and Ni,Co were closely adjacent. Compared with the monometallic 10Ni0Co/SiO2 catalyst and 0Ni10Co/SiO2 catalyst, the as-prepared bimetallic 5Ni5Co/SiO2 nano alloy catalyst showed the best catalytic activity. On the monometallic 10Ni0Co/SiO2 catalyst, owing to the faster cracking of methane on Ni particles, the catalytic activity decreased 10% by coking during the 50 h test. However, 0Ni10Co/SiO2 catalyst was deactivated by the oxidation of Co. In the 100 h test of 5Ni5Co/SiO2 bimetallic catalyst, the catalytic activity remained stable. TPSR showed that the dissociation of methane and the generation of *C was slightly inhibited and the activation of CO2 was intensified. More activated *O enhanced the reaction of *C or *CHx and *O. The anti-coking performance was improved. The results provide implications for anti-coking catalysts for catalytic reforming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.