Abstract

The effects of the addition of calcia, ceria and lanthana to alumina-supported platinum catalysts on the simultaneous control of hydrocarbon, carbon monoxide and nitrogen oxide automobile emissions (three-way catalyst behaviour) were analyzed. The activity of the prepared samples was determined with steady-state, reducing and oxidizing, simulated feedstreams as well as with a cycled oxidizing-reducing feedstream averaged at the stoichiometric conditions which resembled the exhaust air/fuel fluctuations in a closed-loop emission control system. Activity of the catalysts was also analyzed after conducting accelerated thermal and chemical ageing in order to test their durability. Under normal operating conditions of the automobile engine, Pt/Al 2O 3 catalysts promoted by rare-earth oxides are able to achieve high HC, CO and NO conversions. The behaviour of the catalysts in the cold start period was determined by analysis of light-off temperatures and a comparison was made with those corresponding to some commercial samples and others reported in the literature. The catalysts prepared in this work showed lower light-off temperatures than those of commercial and reported Pt/Al 2O 3 catalysts but these temperatures were not so low as with PtRh/Al 2O 3. In all cases, the prepared catalysts resulted in a better resistance to accelerated ageing. Samples with ceria showed the best resistance to accelerated ageing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.