Abstract
Segmentation is a key step in embryonic development. Acting in all germ layers, it is responsible for the generation of antero-posterior asymmetries. Hox genes, with their diverse expression in individual segments, are fundamental players in the determination of different segmental fates. In vertebrates, Hox gene products gain specificity for DNA sequences by interacting with Pbx, Prep and Meis homeodomain transcription factors. In this work we cloned and analysed prep1.2 in zebrafish. In-situ hybridization experiments show that prep1.2 is maternally and ubiquitously expressed up to early somitogenesis when its expression pattern becomes more restricted to the head and trunk mesenchyme. Experiments of loss of function with prep1.2 morpholinos change the shape of the hyoid and third pharyngeal cartilages while arches 4–7 and pectoral fins are absent, a phenotype strikingly similar to that caused by loss of retinoic acid (RA). In fact, we show that prep1.2 is positively regulated by RA and required for the normal expression of aldh1a2 at later stages, particularly in tissues involved in the development of the branchial arches and pectoral fins. Thus, prep1.2 and aldh1a2 are members of an indirect positive feedback loop required for pharyngeal endoderm and posterior branchial arches development. As the paralogue gene prep1.1 is more important in hindbrain patterning and neural crest chondrogenesis, we provide evidence of a functional specialization of prep genes in zebrafish head segmentation and morphogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.