Abstract
Ki67 proliferation index is associated with more aggressive tumor behavior and recurrence of pituitary adenomas (PAs). Recently, radiomics and deep learning have been introduced into the study of pituitary tumors. The present study aimed to investigate the feasibility of predicting the Ki67 proliferation index of PAs using the deep segmentation network and radiomics analysis based on multiparameter MRI. First, the cfVB-Net autosegmentation model was trained; subsequently, its performance was evaluated in terms of the dice similarity coefficient (DSC). In the present study, 1214 patients were classified into the high Ki67 expression group (HG)and thelow Ki67 expression group (LG). Analyses of three classification models based on radiomics features were performed to distinguish HG from LG. Clinical factors, imaging features, and Radscores were collectively used to create a nomogram in order to effectively predict Ki67 expression. The cfVB-Net segmentation model demonstrated good performance (DSC: 0.723-0.930). Overall, 18, 15, and 11 optimal features in contrast-enhanced (CE) T1WI, T1WI, and T2WI were obtained for differentiating between HG and LG, respectively. Notably, the best results were presented in the bagging decision tree when CE T1WI and T1WI were combined (area under the receiver operating characteristic curve: training set, 0.927; validation set, 0.831; and independent testing set, 0.825). In the nomogram, age, Hardy' grade, and Radscores were identified as risk predictors of high Ki67 expression. The deep segmentation network and radiomics analysis based on multiparameter MRI exhibited good performance and clinical application value in predicting the expression of Ki67 in PAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.