Abstract

Several studies have reported the importance of preoperative simulations. This report describes the methods and utility of neuroendovascular treatment using a three-dimensional(3D)-printed hollow cerebral aneurysm model. This model was created using a stereolithography apparatus-type 3D printer with digital imaging and communications in medicine data from 3D digital subtraction angiograms. The 3D model was used to perform preoperative simulations of microcatheter placement in aneurysms, microguidewire manipulation, and stent deployment. We performed each simulated procedure during surgery. The hollow cerebral aneurysm 3D model can also be used as a training model for surgical trainees. Preoperative simulation using a high-precision hollow cerebral aneurysm model created using 3D printers enables the discussion of specific treatment strategies for each case, including new devices and device sizes, and is expected to develop into "tailor-made medicine" in the future, contributing to safe and reliable treatment implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call