Abstract

ObjectiveTo evaluate the performance of dual-energy CT (DECT)-based radiomics models for identifying high-risk histopathologic phenotypes - serosal invasion (pT4a), lymph node metastasis (LNM), lymphovascular invasion (LVI) and perineural invasion (PNI) in gastric cancer. Material and MethodsThis prospective bi-center study recruited histologically confirmed gastric adenocarcinoma patients who underwent triple-phase enhanced DECT before gastrectomy between January 2021 and July 2023. Radiomics features were extracted from polychromatic/monochromatic (40keV, 100 keV)/iodine images at arterial/venous/delay phase, respectively. Predictive features were selected in the training dataset using logistic regression classifier, and trained models were applied to the external validation dataset. Performances of clinical models, conventional contrast enhanced CT (CECT) models and DECT models were evaluated using areas under the receiver operating characteristic curve (AUCs). ResultsIn total, 503 patients were recruited: 396 at training dataset (60.1 ± 10.8 years, 110 females, 286 males) and 107 at validation dataset (61.4 ± 9.5 years, 29 females, 78 males). DECT models dichotomizing pT4a, LNM, LVI, and PNI achieved AUCs of 0.891, 0.817, 0.834, and 0.889, respectively, in the validation dataset, similar with the CECT models. In the training dataset, compared with the CECT model, the DECT model provided increased performance for identifying pT4a, LNM, LVI (all P<0.05), and similar performance for stratifying PNI (P = 0.104). The DECT models was associated with patient disease-free survival (all P <0.05). ConclusionDECT radiomics can stratify patients preoperatively according to high-risk histopathologic phenotypes for gastric cancer and are associated with patient disease-free survival in the training dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.