Abstract
ObjectivesTo explore the predictive performance of tumor and multiple peritumoral regions on dynamic contrast-enhanced magnetic resonance imaging (MRI), to identify optimal regions of interest for developing a preoperative predictive model for the grade of microvascular invasion (MVI).MethodsA total of 147 patients who were surgically diagnosed with hepatocellular carcinoma, and had a maximum tumor diameter ≤ 5 cm were recruited and subsequently divided into a training set (n = 117) and a testing set (n = 30) based on the date of surgery. We utilized a pre-trained AlexNet to extract deep learning features from seven different regions of the maximum transverse cross-section of tumors in various MRI sequence images. Subsequently, an extreme gradient boosting (XGBoost) classifier was employed to construct the MVI grade prediction model, with evaluation based on the area under the curve (AUC).ResultsThe XGBoost classifier trained with data from the 20-mm peritumoral region showed superior AUC compared to the tumor region alone. AUC values consistently increased when utilizing data from 5-mm, 10-mm, and 20-mm peritumoral regions. Combining arterial and delayed-phase data yielded the highest predictive performance, with micro- and macro-average AUCs of 0.78 and 0.74, respectively. Integration of clinical data further improved AUCs values to 0.83 and 0.80.ConclusionCompared with those of the tumor region, the deep learning features of the peritumoral region provide more important information for predicting the grade of MVI. Combining the tumor region and the 20-mm peritumoral region resulted in a relatively ideal and accurate region within which the grade of MVI can be predicted.Clinical relevance statementThe 20-mm peritumoral region holds more significance than the tumor region in predicting MVI grade. Deep learning features can indirectly predict MVI by extracting information from the tumor region and directly capturing MVI information from the peritumoral region.Key PointsWe investigated tumor and different peritumoral regions, as well as their fusion.MVI predominantly occurs in the peritumoral region, a superior predictor compared to the tumor region.The peritumoral 20 mm region is reasonable for accurately predicting the three-grade MVI.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.