Abstract

Prediction models with or without radiomic analysis for microvascular invasion (MVI) in hepatocellular carcinoma (HCC) have been reported, but the potential for model-predicted MVI in surgical planning is unclear. Therefore, we aimed to explore the effect of predicted MVI on early recurrence after anatomic resection (AR) and non-anatomic resection (NAR) to assist surgical strategies. Patients with a single HCC of 2-5 cm receiving curative resection were enrolled from 2 centers. Their data were used to develop (n = 230) and test (n = 219) two prediction models for MVI using clinical factors and preoperative computed tomography images. The two prediction models, clinico-radiologic model and clinico-radiologic-radiomic (CRR) model (clinico-radiologic variables + radiomic signature), were compared using the Delong test. Early recurrence based on model-predicted high-risk MVI was evaluated between AR (n = 118) and NAR (n = 85) via propensity score matching using patient data from another 2 centers for external validation. The CRR model showed higher area under the curve values (0.835-0.864 across development, test, and external validation) but no statistically significant improvement over the clinico-radiologic model (0.796-0.828). After propensity score matching, difference in 2-year recurrence between AR and NAR was found in the CRR model predicted high-risk MVI group (P = 0.005) but not in the clinico-radiologic model predicted high-risk MVI group (P = 0.31). The prediction model incorporating radiomics provided an accurate preoperative estimation of MVI, showing the potential for choosing the more appropriate surgical procedure between AR and NAR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.