Abstract

To investigate key morphometric features identifiable on routine preoperative computed tomography (CT) imaging indicative of incisional hernia (IH) formation following abdominal surgery. IH is a pervasive surgical disease that impacts all surgical disciplines operating in the abdominopelvic region and affecting 13% of patients undergoing abdominal surgery. Despite the significant costs and disability associated with IH, there is an incomplete understanding of the pathophysiology of hernia. A cohort of patients (n=21,501) that underwent colorectal surgery was identified, and clinical data and demographics were extracted, with a primary outcome of IH. Two datasets of case-control matched pairs were created for feature measurement, classification, and testing. Morphometric linear and volumetric measurements were extracted as features from anonymized preoperative abdominopelvic CT scans. Multivariate Pearson testing was performed to assess correlations among features. Each feature's ability to discriminate between classes was evaluated using 2-sided paired t testing. A support vector machine was implemented to determine the predictive accuracy of the features individually and in combination. Two hundred and twelve patients were analyzed (106 matched pairs). Of 117 features measured, 21 features were capable of discriminating between IH and non-IH patients. These features are categorized into three key pathophysiologic domains: 1) structural widening of the rectus complex, 2) increased visceral volume, 3) atrophy of abdominopelvic skeletal muscle. Individual prediction accuracy ranged from 0.69 to 0.78 for the top 3 features among 117. Three morphometric domains identifiable on routine preoperative CT imaging were associated with hernia: widening of the rectus complex, increased visceral volume, and body wall skeletal muscle atrophy. This work highlights an innovative pathophysiologic mechanism for IH formation hallmarked by increased intra-abdominal pressure and compromise of the rectus complex and abdominopelvic skeletal musculature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call