Abstract

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft-tissue tumors prevalent in neurofibromatosis type 1 (NF1) patients, posing a significant risk of metastasis and recurrence. Current magnetic resonance imaging (MRI) imaging lacks decisiveness in distinguishing benign peripheral nerve sheath tumors (BPNSTs) and MPNSTs, necessitating invasive biopsies. This study aims to develop a radiomics model using quantitative imaging features and machine learning to distinguish MPNSTs from BPNSTs. Clinical data and MRIs from MPNST and BPNST patients (2000-2019) were collected at a tertiary sarcoma referral center. Lesions were manually and semi-automatically segmented on MRI scans, and radiomics features were extracted using the Workflow for Optimal Radiomics Classification (WORC) algorithm, employing automated machine learning. The evaluation was conducted using a 100× random-split cross-validation. A total of 35 MPNSTs and 74 BPNSTs were included. The T1-weighted (T1w) MRI radiomics model outperformed others with an area under the curve (AUC) of 0.71. The incorporation of additional MRI scans did not enhance performance. Combining T1w MRI with clinical features achieved an AUC of 0.74. Experienced radiologists achieved AUCs of 0.75 and 0.66, respectively. Radiomics based on T1w MRI scans and clinical features show some ability to distinguish MPNSTs from BPNSTs, potentially aiding in the management of these tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.