Abstract

Aim: To develop and validate a radiomics-based combined model (ModelRC) to predict the pathological grade of endometrial cancer. Methods: A total of 403 endometrial cancer patients from two independent centers were enrolled as training, internal validation and external validation sets. Radiomic features were extracted from T2-weighted images, apparent diffusion coefficient map and contrast-enhanced 3D volumetric interpolated breath-hold examination images. Results: Compared with the clinical model and radiomics model, ModelRC showed superior performance; the areas under the receiver operating characteristic curves were 0.920 (95% CI: 0.864-0.962), 0.882 (95% CI: 0.779-0.955) and 0.881 (95% CI: 0.815-0.939) for the training, internal validation and external validation sets, respectively. Conclusion: ModelRC, which incorporated clinical and radiomic features, exhibited excellent performance in the prediction of high-grade endometrial cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.