Abstract
Uterine myomas are the most common gynecologic benign tumor affecting women of childbearing age, and myomectomy is the main surgical option to preserve the uterus and fertility. During myomectomy for women with multiple myomas, it is advisable to identify and remove as many as possible to decrease the risk of future myomectomies. With deficient preoperative imaging, gynecologists are challenged to identify the location and size of myomas and the endometrium, which, in turn, can lead to uterine rupture during future pregnancies. Current conventional 2-dimensional imaging has limitations in identifying precise locations of multiple myomas and the endometrium. In our experience, we preferred to use 3-dimensional imaging to delineate the myomas, endometrium, or blood vessels, which we were able to successfully reconstruct by using the following imaging method. To achieve 3-dimensional imaging, we matched T2 turbo spin echo images to detect uterine myomas and endometria with T1 high-resolution isotropic volume excitation–post images used to detect blood vessels by using an algorithm based on the 3-dimensional region growing method. Then, we produced images of the uterine myomas, endometria, and blood vessels using a 3-dimensional surface rendering method and successfully reconstructed selective 3-dimensional imaging for uterine myomas, endometria, and adjacent blood vessels. A Web-based survey was sent to 66 gynecologists concerning imaging techniques used before myomectomy. Twenty-eight of 36 responding gynecologists answered that the 3-dimensional image produced in the current study is preferred to conventional 2-dimensional magnetic resonance imaging in identifying precise locations of uterine myomas and endometria. The proposed 3-dimensional magnetic resonance imaging method successfully reconstructed uterine myomas, endometria, and adjacent vessels. We propose that this will be a helpful adjunct to uterine myomectomy as a preoperative imaging technique in future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.