Abstract
Icariin, a flavonoid phytoestrogen derived from Herba epimedii, has been reported to exert estrogenic effects in bone and activate phosphorylation of estrogen receptor (ER) α in osteoblastic cells. However, it is unclear whether icariin selectively exerts estrogenic activities in bone without inducing undesirable effects in other estrogen-sensitive tissues. The present study aimed to investigate the tissue-selective estrogenic activities of icariin in estrogen-sensitive tissues in vivo and in vitro. Long-term treatment with icariin effectively prevented bone of ovariectomized (OVX) rats from estrogen deficiency–induced osteoporotic changes in bone structure, bone mineral density, and trabecular properties. Moreover, icariin regulated the transcriptional events of estrogen-responsive genes related to bone remodeling and prevented dopaminergic neurons against OVX-induced changes by rescuing expression of estrogen-regulated tyrosine hydroxylase and dopamine transporter in the striatum. Unlike estrogen, icariin did not induce estrogenic effects in the uterus and breast in mature OVX rats or immature CD-1 mice. In vitro studies demonstrated that icariin exerted estrogen-like activities and regulated the expression of estrogen-responsive genes but did not induce estrogen response element–dependent luciferase activities in ER-positive cells. Our results support the hypothesis that icariin, through its distinct mechanism of actions in activating ER, selectively exerts estrogenic activities in different tissues and cell types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.