Abstract

Parental exposure to polybrominated diphenyl ethers (PBDEs) in animals has been found to be transferred to the offspring. The environmental health risk and toxicity to the offspring are still unclear. The objective of the present study was to identify environmentally relevant concentrations of PBDEs for parental exposure that would cause developmental neurotoxicity in the offspring. Adult zebrafish were exposed to environmentally relevant concentrations of DE-71 (0.16, 0.8, 4.0 μg/L) via water. The results showed that PBDE exposure did not affect larvae hatching, malformation, or survival. The residue of PBDEs was detected in F1 eggs upon parental exposure. Acetylcholinesterase (AChE) activity was significantly inhibited in F1 larvae. Genes of central nervous system development (e.g., myelin basic protein, synapsin IIa, α1-tubulin) were significantly downregulated in larvae. Protein levels of α1-tubulin and synapsin IIa were also reduced. Decreased locomotion activity was observed in the larvae. This study provides the first evidence that parental exposure to environmentally relevant concentrations of PBDEs could cause adverse effects on neurodevelopment in zebrafish offspring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call