Abstract

Although evidence is accumulating that prenatal testosterone (T) compromises reproductive function in the female, the effects of excess T in utero on the postnatal development of male reproductive function has not been studied. The aim of this study was to assess the influence of prenatal T excess on age-related changes in pituitary and gonadal responsiveness to GnRH in the male sheep. We used the GnRH agonist, leuprolide (10 microg/kg), as a pharmacologic challenge at 5, 10, 20 and 30 weeks of age. These time points correspond to early and late juvenile periods and the prepubertal and postpubertal periods of sexual development, respectively. LH and T were measured in blood samples collected before and after GnRH agonist administration. The area under the response curve (AUC) of LH increased progressively in both controls and prenatal T-treated males from 5 to 20 weeks of age (P<0.01). The LH responses in prenatal T-treated males were lower at 20 and 30 weeks of age compared to controls (P<0.05). AUC-T increased progressively in control males from 5 through 30 weeks of age and prenatal T-treated males from 5 to 20 weeks of age. The T response in prenatal T-treated males was higher at 20 weeks compared to controls of same age but similar to controls and prenatal T-treated males at 30 weeks of age (P <0.05). Our findings suggest that prenatal T treatment advances the developmental trajectory of gonadal responsiveness to GnRH in male offspring.

Highlights

  • Prenatal exposure to excess testosterone (T) leads to number of adverse consequences in adult life

  • Our findings suggest that prenatal T treatment advances the developmental trajectory of gonadal responsiveness to GnRH in male offspring

  • The findings from this study reveal that prenatal exposure to excess T, like in the females, has an impact on the reproductive trajectory of the males

Read more

Summary

Introduction

Prenatal exposure to excess testosterone (T) leads to number of adverse consequences in adult life. Prenatal T treatment disrupts the ability of the female sheep to respond to the stimulatory feedback action of estrogen (Sharma et al 2002; Unsworth et al 2005; Wood and Foster, 1998). This disruption is Received: December 17, 2006.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call