Abstract

Prenatal testosterone (T)-treated female sheep display reproductive deficits similar to women with polycystic ovarian syndrome (PCOS), including an increase in LH pulse frequency due to actions of the central GnRH pulse generator. In this study, we used multiple-label immunocytochemistry to investigate the possibility of changes in the γ-aminobutyric acid (GABA) neurotransmitter system at two key components of the GnRH pulse generator in prenatal T-treated sheep: kisspeptin/neurokinin B/dynorphin (KNDy) neurons of the arcuate nucleus, and GnRH neurons in the preoptic area (POA) and mediobasal hypothalamus (MBH). We observed a significant decrease and increase, respectively, in the number of GABAergic synapses onto POA and MBH GnRH neurons in prenatal T-treated ewes; additionally, there was a significant increase in the number of GABAergic inputs onto KNDy neurons. To determine the actions of GABA on GnRH and KNDy neurons, we examined colocalization with the chloride transporters NKCC1 and KCC2, which indicate stimulatory or inhibitory activation of neurons by GABA, respectively. Most GnRH neurons in both POA and MBH colocalized NKCC1 cotransporter whereas none contained the KCC2 cotransporter. Most KNDy neurons colocalized either NKCC1 or KCC2, and 28% of the KNDy population contained NKCC1 alone. Therefore, we suggest that, as in the mouse, GABA in the sheep is stimulatory to GnRH neurons, as well as to a subset of KNDy neurons. Increased numbers of stimulatory GABAergic inputs to both MBH GnRH and KNDy neurons in prenatal T-treated animals may contribute to alterations in steroid feedback control and increased GnRH/LH pulse frequency seen in this animal model of PCOS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.