Abstract

ObjectiveOur earlier studies show that maternal diets imbalanced in micronutrients like folic acid and vitamin B12 reduced brain docosahexaenoic acid (DHA) and brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the offspring at birth and postnatal d21. This study followed the offspring till 3months to examine the hypothesis that impaired brain neurotrophins at birth and d21 due to altered maternal micronutrients can be reversed by prenatal omega 3 fatty acid but not a postnatal control diet leading to altered cognition in adult life. Materials and MethodsPregnant rats were divided into control and five treatment groups at two levels of folic acid (normal and excess folate) in the presence and absence of vitamin B12 (NFBD, EFB and EFBD). Omega 3 fatty acid supplementation was given to the vitamin B12 deficient groups (NFBDO and EFBDO). Following delivery, 8 dams from each group were shifted to control and remaining continued on same diet. ResultsImbalance in maternal micronutrients up to 3months decreased DHA, BDNF and NGF in cortex and only BDNF in the hippocampus and impaired cognitive performance. Postnatal control diet normalized BDNF in the cortex but not the hippocampus and also altered cognitive performance. Prenatal omega 3 fatty acid supplementation normalized DHA, BDNF and NGF while long term supplementation was not beneficial only when micronutrients were imbalanced. ConclusionPatterns established at birth are not totally reversible by postnatal diets and give clues for planning intervention studies for improving brain functioning and cognitive abilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call