Abstract

Our previous study showed that prenatal nicotine exposure could increase the heart rate of adult male offspring rats, but little is known about the mechanism. The aim of this study was to investigate the mechanism. Nicotine was subcutaneously administered to pregnant rats at a dose of 1.5mgkg−1 from the gestational days 3–21; the control group received the same volume of saline by the same route. The offsprings’ heart weight, ejection function, ultrastructure, and blood hormones were determined. The present study exhibited that prenatal nicotine exposure significantly decreased the offsprings’ heart and body weight at gestational day 21 and at day 15 after birth, but had no effect on the heart and body weight at 90 days after birth. The hearts were fibrosed in the nicotine exposed male offsprings, and the heart ejection functions of the nicotine male offsprings at 90 days after birth were decreased, including SV, FS and EF. In addition, prenatal nicotine exposure significantly increased the offspring’s blood adrenaline and norepinephrine levels. These data suggest that the increased heart rate caused by prenatal nicotine exposure may be a result of myocardial fibrosis, which leads to heart function decreases, and these data imply a myocardial fibrosis risk of prenatal nicotine exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call