Abstract

Higher maternal and biomarker levels of n-3 long-chain polyunsaturated fatty acids (LCPUFAs) have been associated with improved perinatal outcomes and may also influence offspring metabolic health. Past studies were not powered to examine metabolic outcomes and few have specifically targeted metabolically vulnerable populations. We examined the associations of prenatal n-3 LCPUFA status with markers of metabolic health in early and mid-childhood in the full population as well as stratified by maternal glucose tolerance. Our data consisted of 1418 mother–child dyads from Project Viva, a longitudinal, prospective pre-birth cohort enrolled in eastern Massachusetts. We assessed maternal dietary intake of fish and n-3 LCPUFA in mid-pregnancy using a validated food frequency questionnaire. N-3 LCPUFA levels were quantified in maternal second trimester and umbilical cord plasma using liquid-gas chromatography. We assessed offspring anthropometry, adiposity, and blood pressure at early (median age: 3.2 years) and mid-childhood (median age: 7.7 years); and assayed blood samples collected at these visits for metabolic biomarkers. We report here multivariable effect estimates and 95% CI. Early childhood BMI z-score was on average 0.46 (1.03) units and waist circumference 51.3 (3.7) cm. At mid-childhood these measures were 0.39 (1.00) units and 60.0 (8.3) cm, respectively. Higher cord plasma DHA levels were associated with lower BMI z-score ((Q)uartile 4 vs. Q1: −0.21, 95% CI: −0.38, −0.03), waist circumference (Q4 vs. Q1: −0.63, 95% CI: −1.27, 0.00 cm), and leptin levels (Q4 vs. Q1: −0.36, 95% CI: −0.77, 0.05 ng/mL) in early childhood. These associations were strongest and reached significance in offspring of women with isolated hyperglycemia vs. better or worse glycemic status. Higher maternal DHA + EPA (Q4 vs. Q1: −1.59, 95% CI: −2.80, −0.38 μg/mL) and fish (≥3 vs. 0 portions/week: −2.18, 95% CI: −3.90, −0.47 μg/mL) intake was related to lower adiponectin in early childhood. None of these associations persisted with mid-childhood outcomes. We did not find associations with any of the other outcomes. This study supports early and possibly transient effects of prenatal n-3 LCPUFA status on anthropometric measures and adipokine levels. It also raises the possibility that offspring of women with isolated hyperglycemia derive the most benefits from higher n-3 LCPUFA status.

Highlights

  • N-3 long-chain polyunsaturated fatty acids (LCPUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are essential polyunsaturated fatty acids found primarily in fish and seafood

  • DHA levels with lower offspring body mass index (BMI) and waist circumference in early childhood, which was strongest among offspring to women with isolated hyperglycemia, the mildest form of abnormal glycemia in mid-pregnancy

  • The directionality remained for the mid-childhood visit, but the associations with BMI and waist circumference were weaker in magnitude by 25–40% and CIs included the null

Read more

Summary

Introduction

N-3 long-chain polyunsaturated fatty acids (LCPUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are essential polyunsaturated fatty acids found primarily in fish and seafood. They can be synthesized from alpha-linolenic acid found in vegetable oils and nuts, but at a relatively low efficiency. Animal studies have shown that offspring to dams fed diets supplemented with fish oil or n-3 LCPUFA had lower levels of adiposity[2,3,4,5], insulin resistance[3,4,5,6], and cholesterol and triglyceride levels[4] when compared to dams fed diets low in n-3 but rich in saturated fats or n-6 fatty acids

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call