Abstract
Type 2 diabetes (T2D) is commonly regarded as a disease originating from lifestyle-related factors and typically occurring after the age of 40. There is, however, consistent experimental and epidemiological data evidencing that the risk for developing T2D may largely depend on conditions early in life. In particular, intrauterine growth restriction (IUGR) induced by poor or unbalanced nutrient intake can impair fetal growth and also cause fetal adipose tissue and pancreatic β-cell dysfunction. On account of these processes, persisting adaptive changes can occur in the glucose-insulin metabolism. These changes can include reduced ability for insulin secretion and insulin resistance, and they may result in an improved capacity to store fat, thereby predisposing to the development of T2D and obesity in adulthood. Accumulating research findings indicate that epigenetic regulation of gene expression plays a critical role in linking prenatal malnutrition to the risk of later-life metabolic disorders including T2D. In animal models of IUGR, changes in both DNA methylation and expression levels of key metabolic genes were repeatedly found which persisted until adulthood. The causal link between epigenetic disturbances during development and the risk for T2D was also confirmed in several human studies. In this review, the conceptual models and empirical data are summarized and discussed regarding the contribution of epigenetic mechanisms in developmental nutritional programming of T2D.
Highlights
Diabetes mellitus is one of the major causes of death across the globe
A good example evidencing that nongenetic factors could contribute to the etiology and pathogenesis of this disease is research conducted in nuclear families of Pima Indians in which at least one of the siblings was born before and other(s) after the mother has been diagnosed with Type 2 diabetes (T2D) [11]
Data have been obtained suggesting that mechanisms involved in epigenetic regulation of gene expression can largely contribute to developmental etiology of T2D
Summary
Diabetes mellitus is one of the major causes of death across the globe. Type 2 diabetes (T2D), previously referred to as adult-onset or non-insulin-dependent diabetes, accounts for around 90% of all diabetes cases worldwide [1]. A good example evidencing that nongenetic factors could contribute to the etiology and pathogenesis of this disease is research conducted in nuclear families of Pima Indians in which at least one of the siblings was born before and other(s) after the mother has been diagnosed with T2D [11] In this study, those siblings conceived after the mother was diagnosed with diabetes had 3.7-fold higher risk to have T2D in comparison with siblings born before their mother became diabetic, even though their living conditions were highly similar during the rest of life. The conceptual models and empirical findings are summarized and discussed on the contribution of epigenetic mechanisms in the initiation and progression of T2D
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.