Abstract
We investigated whether non-abortive maternal infections would compromise fetal brain development and alter hypothalamic-pituitary-adrenocortical (HPA) axis functioning when adult. To study putative teratogenic effects of a T cell-mediated immune response versus an endotoxic challenge, 10-d-pregnant rats received a single intraperitoneal injection of 5 x 10(8) human red blood cells (HRBC) or gram-negative bacterial endotoxin (Escherichia coli LPS: 30 micrograms/kg). The adult male progeny (3 mo old) of both experimental groups showed increased basal plasma corticosterone levels. In addition, after novelty stress the HRBC group, but not the LPS group, showed increased ACTH and corticosterone levels. Both groups showed substantial decreases in mineralocorticoid (MR) and glucocorticoid receptor (GR) levels in the hippocampus, a limbic brain structure critical for HPA axis regulation, whereas GR concentrations in the hypothalamus were unchanged and in anterior pituitary were slightly increased. HRBC and LPS indeed stimulated the maternal immune system as revealed by specific anti-HRBC antibody production and enhanced IL-1 beta mRNA expression in splenocytes, respectively. This study demonstrates that a T cell-mediated immune response as well as an endotoxic challenge during pregnancy can induce anomalies in HPA axis function in adulthood. Clinically, it may be postulated that disturbed fetal brain development due to prenatal immune challenge increases the vulnerability to develop mental illness involving inadequate responses to stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.