Abstract

Prenatal exposure to organophosphate and pyrethroid insecticides has been associated with impaired neurodevelopment. Few longitudinal studies have investigated associations with early language development in populations with mainly low dietary exposure. To investigate associations between biomarkers of maternal gestational exposure to organophosphate and pyrethroid insecticides and the child's language development at age 20-36 months in the prospective Odense Child Cohort. Metabolites of organophosphate and pyrethroid insecticides were measured in maternal urine samples collected at gestational week 28. Language development was assessed among 755 singletons at age 20-36 months using the Vocabulary and Complexity scores of the MacArthur-Bates Communicative Development Inventories, standardized into age and sex specific percentile scores according to a Danish reference study. Multiple logistic regression models were used to estimate the odds of scoring below the 15th percentile scores in relation to maternal urinary insecticide metabolite concentrations after adjustment for confounders. The generic pyrethroid metabolite 3-phenoxybenzoic acid (3-PBA) and the chlorpyrifos metabolite 3,5,6-trichloro-2-pyridinol (TCPY) were detectable in more than 90% of the urine samples analyzed. Likewise, 82.2% had detectable concentrations of diethyl phosphates (DE) and 58.4% of dimethyl phosphates (DM), both of which are common metabolites of organophosphate insecticides. None of the metabolites was associated with higher odds of delayed results below the 15th percentile language scores. In contrast, reduced probability for scoring below the 15th percentile Vocabulary score was seen for the highest tertile of 3-PBA in boys and for the upper tertile of TCPY and DE in girls. In this prospective cohort, with predominantly dietary insecticide exposure, we found no evidence that gestational exposure to organophosphate or pyrethroid insecticides adversely affected early language development in the children. The observed indication of a positive effect of insecticides on language development may be explained by residual and unmeasured confounding from socioeconomic factors and dietary habits. Follow-up of these children should include assessment of more complex cognitive functions in later childhood, as well as associations with their own postnatal insecticide exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.