Abstract

There is evidence to suggest that an individual’s susceptibility to cardiovascular disease cannot be entirely explained by differences in life style factors (i.e., low physical activity, high fat/salt diet), or genetic causes, but may also be influenced by factors encountered during intrauterine life. Epidemiological studies found the link between low birth weight for gestational age (a broad index of sub-optimal intrauterine environment) and increased incidence of cardiovascular and metabolic diseases in adulthood. Many animal models in which the intrauterine environment was altered during early/late or throughout gestation demonstrated long-term effects on adult health. In general stress in early gestation is more likely to be associated with adult cardiovascular disease including hypertension, whereas late gestation stress may also be associated with adult hypotension in addition to metabolic/endocrine abnormalities. Two systems have been widely hypothesised to serve as mechanisms via which adverse prenatal influences impinge on adult cardiovascular and metabolic disease; hippocampal-hypothalamo-pituitary-adrenal axis (HHPA) and renin-angiotensin system (RAS). Interestingly, at least in our animal model of adult hypertension after brief/early prenatal glucocorticoid exposure, HHPA axis is not altered when studied either in late gestation or at several stages during adulthood. However, our more recent results, using the same animal model, suggest a major role for the central and renal RAS. This review will mainly focus on animal models and potential mechanisms via which a perturbed intrauterine environment (undernutrition or steroid exposure) lead to adult cardiovascular and/or metabolic disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call