Abstract

Fetal exposure to di-n-butyl phthalate (DBP) causes the adult disease such as lower testosterone production and infertility. However, the mechanism is still unknown. The objective of the present study is to determine how DBP affects the involution of fetal Leydig cells during the neonatal period and how this event causes the delayed development of the adult Leydig cells during puberty. The pregnant Sprague Dawley dams were randomly divided into 3 groups and were gavaged with 0 (corn oil, the vehicle control), 100 or 500mg/kg DBP from gestational day 12 (G12) to G21. The blood and testes were collected from male pups on postnatal day 4 (P4), P7, P14, P21, P28, and P56. Serum testosterone concentrations were assessed and the mRNA levels of Leydig cell- or gonadotroph cell-specific genes were measured. Prenatal exposure to DBP caused the aggregation of fetal Leydig cells, which slowly disappeared when compared to the control. This effect was associated with the reduction of testicular testosterone secretion and down-regulation of the mRNA levels of Leydig cell biomarkers including Scarb1, Star, Cyp11a1, Hsd3b1, Hsd11b1, and Hsd17b3 as well as the gonadotroph biomarkers including Lhb and Gnrhr. In conclusion, we demonstrated that the increased aggregation of fetal Leydig cells by DBP delayed fetal Leydig cell involution, thus leading to the disrupted development of the adult Leydig cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.