Abstract
Intrauterine growth restriction (IUGR) and consumption of a high saturated fat diet (HFD) increase the risk of hypercholesterolemia, a leading cause of morbidity and mortality. The mechanism through which the cumulative impact of IUGR and in utero exposure to a maternal HFD increase cholesterol levels remains unknown. Cholesterol 7α hydroxylase (Cyp7a1) initiates catabolism of cholesterol to bile acids for elimination from the body, and is regulated by microRNA-122 (miR-122). We hypothesized that IUGR rats exposed to a maternal HFD would have increased cholesterol and decreased Cyp7a1 protein levels in juvenile rats, findings which would be normalized by administration of a miR-122 inhibitor. To test our hypothesis we used a rat model of surgically induced IUGR and fed the dams a regular diet or a HFD from prior to conception through lactation. At the time of weaning, IUGR female rats exposed to a maternal HFD had increased hepatic cholesterol, decreased hepatic Cyp7a1 protein and hepatic bile acids, and increased hepatic miR-122 compared to non-IUGR rats exposed to the same HFD. In vivo inhibition of miR-122 increased hepatic Cyp7a1 protein and decreased hepatic cholesterol. Our findings suggest that IUGR combined with a maternal HFD decreased cholesterol catabolism to bile acids, in part, via miR-122 inhibition of Cyp7a1.
Highlights
Intrauterine growth restriction (IUGR) results from inadequate fetal nutrition during gestation and increases the risk of hypercholesterolemia in adulthood (Forsdahl, 1978; Barker et al, 1989, 1993)
The primary finding in this study is that female rats subjected to IUGR and a maternal high saturated fat diet (HFD) had increased hepatic cholesterol, decreased hepatic Cyp7a1 protein and bile acids, and increased miR-122
Inhibition of miR-122 in IUGR+HFD female rats increased Cyp7a1 protein and decreased hepatic cholesterol in IUGR+HFD rats. These findings suggest that one pathway through which IUGR induces hepatic cholesterol accumulation may be via increased miR-122 inhibition of Cyp7a1, causing decreased cholesterol catabolism to bile acids
Summary
Intrauterine growth restriction (IUGR) results from inadequate fetal nutrition during gestation and increases the risk of hypercholesterolemia in adulthood (Forsdahl, 1978; Barker et al, 1989, 1993). The liver regulates hepatic cholesterol levels through multiple pathways. One of these pathways involves catabolism of cholesterol to bile acids and excretion from the body via cholesterol 7 alpha-hydroxylase (Cyp7a1). Other pathways regulating liver sterol metabolism include the following: transcriptional regulation of de novo cholesterol production by Sterol regulatory element binding protein 2 (Srebp2), multistep regulation of the ratelimiting enzyme of sterol synthesis 3-hydroxy-3-methylglutarylCoA reductase (Hmgcr), import of cholesterol from the plasma via the low density lipoprotein (LDL) receptor (Ldlr), export of high density lipoprotein (HDL) cholesterol to the plasma via ATP binding cassette transporters g1 (Abcg1) and Abca, and export of very-low density lipoprotein (VLDL) cholesterol to the plasma by Fatty acid synthase (Fasn) and Microsomal transferase protein (Mtp)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.