Abstract

BackgroundPrior studies have suggested exposure to heavy metals and endocrine disrupting chemicals could disturb the homeostasis of thyroid stimulating hormone (TSH), but no epidemiology study concerning the influence of rare earth elements (REE) exposure during pregnancy on neonatal TSH levels. The present study aimed to investigate the relationships between prenatal REE exposure and neonatal TSH levels. MethodsA total of 7367 pregnant women were recruited from Wuhan Children’s Hospital between September 2012 and October 2014 in Wuhan, China. Urinary concentrations of cerium (Ce), and ytterbium (Yb) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Immunofluorescence assay was used to detect neonatal TSH levels. The associations between REE exposure and neonatal TSH levels were evaluated using multivariate linear regression models. ResultsThe geometric means of maternal urinary Ce and Yb concentrations were 0.060 μg/g creatinine and 0.025 μg/g creatinine, respectively. The results showed that per doubling of maternal urinary Ce and Yb were associated with 4.07% (95% CI: −5.80%, −2.31%), 5.13% (95% CI: −6.93%, −3.30%) decreased neonatal TSH levels respectively in the adjusted model. Sex stratified analysis demonstrated that the decreased neonatal TSH levels were observed both in male infants and female infants, and the decrease was greater in male infants in urinary Ce. There were no significant interactions between maternal urinary Ce, Yb and infant sex (Ce: P for interaction = 0.173, Yb: P for interaction = 0.967). ConclusionsOur findings demonstrated that increased maternal urinary Ce and Yb were associated with decreased neonatal TSH levels. Further researches from different populations are warranted to verify the association and to explore the mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.