Abstract

BackgroundCombined methylmalonic aciduria and homocystinuria, cobalamin(cbl)C deficiency, is a rare disorder of intracellular vitamin B12(cbl) metabolism caused by mutations in the MMACHC gene. Both genetic and biochemical approach have been established to diagnose children and fetuses with cblC deficiency, while in China there is no report of prenatal genetic diagnosis of cblC deficiency. The aim of the present study was to characterize the mutational spectrum of cblC deficiency and investigate the feasibility of genetic-sequencing-based prenatal diagnosis for cblC deficiency.Methods10 pedigrees were recruited in this study with the probands clinically and biochemically confirmed combined methymalonic aciduria and homocystinuria. Peripheral blood samples were collected for MMACHC genetic test from the probands and their parents (4 probands had already dead) and 50 control subjects. The entire coding region and adjacent splice sites of MMACHC were sequenced. After the genotypes of the pedigrees were identified, chorionic villi sampling were performed for 3 high-risk pregnant women for prenatal genetic diagnosis.ResultsA total of 7 mutations were identified: c.217C > T (R73X), c.394C > T (R132X), c.463G > C (G155R), c.609G > A (W203X), c.616C > T (R206W), c.658-660delAAG (220delK), and c.567dupT (I190YfsX13), as well as 2 polymophsims: c.321G > A(V107V), c.-302G > T. And G155R is a novel mutation that haven’t been reported in the literatures. All the 6 probands identified with compound heterozygous mutations or homozygous mutations of MMACHC gene, and all the parents of the probands were found to have one MMACHC mutation at a heterozygous level. Prenatal diagnosis of fetuses from 3 families with a child affected cblC deficiency showed that one fetus had the same compound heterozygous mutations as the proband, one did not have MMACHC mutation, and the third fetus had a mutation at a heterozygous level of MMACHC gene. Results from the follow-ups were consistent with the prenatal diagnosis.ConclusionA novel mutation p.G155R of the MMACHC gene is identified. Genetic diagonsis is an accurate and convenient method for prenatal diagnosis and early intervention of combined methylmalonic aciduria and homocystinuria.

Highlights

  • Combined methylmalonic aciduria and homocystinuria, cobalamin(cbl)C deficiency, is a rare disorder of intracellular vitamin B12(cbl) metabolism caused by mutations in the MMACHC gene

  • Methylmalonic acidemia (MMA), the most common inborn disorder of organic acid metabolism, is inherited as an autosomal recessive disease caused by defects of methylmalonyl CoA mutase (MCM) or disorders of intracellular cobalamin metabolism [1]

  • None of the mutations listed here were found in exon sequencing of the MMACHC gene from the 50 control subjects

Read more

Summary

Introduction

Combined methylmalonic aciduria and homocystinuria, cobalamin(cbl)C deficiency, is a rare disorder of intracellular vitamin B12(cbl) metabolism caused by mutations in the MMACHC gene. Both genetic and biochemical approach have been established to diagnose children and fetuses with cblC deficiency, while in China there is no report of prenatal genetic diagnosis of cblC deficiency. All of them may cause the deficiency of methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl) and reduce the activity of methionine synthase and methylmalonyl CoA mutase (MCM) Both methylmalonic acid and homocysteine will be accumulated in the blood and urine [3, 4]. Late-onset patients exhibit ataxia, dementia, psychosis and other neurologic symptoms after 4 years old [1, 3]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call