Abstract

The aim of this study was to determine the developmental anatomy of intrinsic cardiac ganglia with respect to epicardiac ganglionated nerve plexus in the human fetuses at different gestation stages. Twenty fetal hearts were investigated applying a technique of histochemistry for acetylcholinesterase to visualize the epicardiac neural ganglionated plexus with its subsequent examinations on total (non-sectioned) hearts. Most epicardiac ganglia embodied multilayered neurons and were oval in shape, but some ganglia involved neurons lying in one layer or had the irregular appearance because of their extensions along inter-ganglionic nerves. The mean ganglion area of fetuses at gestation stages of 15-40 weeks was 0.03 +/- 0.008 mm(2). The largest epicardiac ganglia, reaching in area 0.4 mm(2), were concentrated on the dorsal surface of both atria. The particular fused or "dual" ganglia were identified at the gestation stages of 23-40 weeks, but they composed only 2.3 +/- 0.7% of all found epicardiac ganglia. A direct positive correlation was determined between the fetal age and the ganglion area (mm(2)) as well as between the fetal age and the number of inter-ganglionic nerves. The revealed appearance of epicardiac ganglia in the human fetuses at 15-40 weeks of gestation confirms their prenatal development and presumable intrinsic remodelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call