Abstract

Fetal exposure to synthetic glucocorticoids in sheep results in increased fetal hypothalamic-pituitary-adrenal (HPA) activity persisting to one year of age. We aimed to determine the effects of single or repeated maternal or fetal betamethasone injections on offspring HPA activity at 2 and 3 yr of age and whether changes in adrenal mediators of steroidogenesis contribute to changes in pituitary-adrenal function. Pregnant ewes or their fetuses received either repeated intramuscular saline or betamethasone injections (0.5 mg/kg) at 104, 111, 118, and 124 days of gestation (dG) or a single betamethasone injection at 104 dG followed by saline at 111, 118, and 124 dG. Offspring were catheterized at 2 and 3 yr of age and given corticotrophin-releasing hormone + arginine vasopressin challenges. Adrenal tissue was collected for quantitative RT-PCR mRNA determination at 3.5 yr of age. In 2-yr-old offspring, maternal betamethasone injections did not alter basal ACTH or cortisol levels, but repeated injections elevated ACTH responses. At 3 yr of age, basal ACTH was elevated, and both basal and stimulated cortisol levels were suppressed by repeated maternal injections. Basal and stimulated cortisol-to-ACTH ratios and basal cortisol-to-cytochrome P-450 17alpha-hydroxylase (P450c17) mRNA ratios were suppressed by repeated injections. Repeated fetal betamethasone injections attenuated basal ACTH and cortisol levels in offspring at 2 but not 3 yr of age. Plasma changes were not associated with altered adrenal P450c17, ACTH receptor, beta-hydroxysteroid dehydrogenase, or glucocorticoid receptor mRNA levels. These data suggest that maternal, but not fetal, betamethasone administration results in adrenal suppression in adulthood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call