Abstract

Neuromotor systems have the capacity for functional recovery following local damage. The literature suggests a possible role for the premotor cortex and cerebellum in motor recovery. However, the specific changes to interactions between these areas following damage remain unclear. Here, we demonstrate potential rewiring of connections from the ipsilesional ventral premotor cortex (ip-PMv) to cerebellar structures in a nonhuman primate model of primary motor cortex (M1) lesion and motor recovery. Cerebellar connections arising from the ip-PMv were investigated by comparing biotinylated dextran amine (BDA) between two groups of male Macaca mulatta: M1-lesion/motor recovery group and intact group. There were more BDA-labeled boutons and axons in all ipsilesional deep cerebellar nuclei (fastigial, interposed, and dentate) in the M1-lesion/recovery group than in the intact group. The difference was evident in the ipsilesional fastigial nucleus (ip-FN), and particularly observed in its middle, a putative somatosensory region of the ip-FN, which was characterized by absent or little expression of aldolase C. Some of the altered projections from the ip-PMv to ip-FN neurons were confirmed as functional because the synaptic markers, synaptophysin and vesicular glutamate transporter 1, were colocalized with BDA-labeled boutons. These results suggest that the adult primate brain after motor lesions can reorganize large-scale networks to enable motor recovery by enhancing sensorimotor coupling and motor commands via rewired fronto-cerebellar connections.SIGNIFICANCE STATEMENT Damaging the motor cortex causes motor deficits, which can be recovered over time. Such motor recovery may result from functional compensation in remaining neuromotor areas, including the ventral premotor cortex. We investigated compensatory changes in neural axonal outputs from ventral premotor to deep cerebellar nuclei in a monkey model of primary motor cortical lesion and motor recovery. The results showed an increase in premotor projections and synaptic formations in deep cerebellar nuclei, especially the sensorimotor region of the fastigial nucleus. Our results provide the first evidence that large-scale reorganization of fronto-cerebellar circuits may underlie functional recovery after motor cortical lesions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call