Abstract

Patterning events that occur before the mid-blastula transition (MBT) and that organize the spatial pattern of gene expression in the animal hemisphere have been analyzed in Xenopus embryos. We present evidence that genes that play a role in dorsoventral specification display different modes of activation. Using early blastomere explants (16–128-cell stage) cultured until gastrula stages, we demonstrate by RT-PCR analysis that the expression of goosecoid ( gsc), wnt-8 and brachyury ( bra) is dependent on mesoderm induction. In contrast, nodal-related 3 ( nr3) and siamois ( sia) are expressed in a manner that is independent of mesoderm induction, however their spatially correct activation does require cortical rotation. The pattern of sia and nr3 expression reveals that the animal half of the 16-cell embryo is already distinctly polarized along the dorsoventral axis as a result of rearrangement of the egg structure during cortical rotation. Similar to the antagonistic activity between the ventral and the dorsal mesoderm, the ventral animal blastomeres can attenuate the expression of nr3 and sia in dorsal animal blastomeres. Our data suggest that no Nieuwkoop center activity at the blastula stage is required for the activation of nr3 and sia in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.