Abstract

Necrotizing enterocolitis (NEC) is associated with low plasma arginine and vascular dysfunction. It is not clear whether low intestinal citrulline production, the precursor for arginine synthesis, occurs before and thus predisposes to NEC or if it results from tissue damage. This study was designed to test the hypothesis that whole body rates of citrulline, arginine, and nitric oxide synthesis are low in premature pigs and that they precede NEC. Piglets delivered by cesarean section at 103 days [preterm (PT)], 110 days [near-term (NT)], or 114 days [full-term (FT)] of gestation were given total parenteral nutrition and after 2 days orogastrically fed infant formula for 42 h to induce NEC. Citrulline and arginine fluxes were determined before and during the feeding protocol. Gross macroscopic and histological NEC scores and plasma fatty acid binding protein (iFABP) concentration were determined as indicators of NEC. Intestinal gene expression for enzymes of the arginine pathway were quantitated. A lower ( P < 0.05) survival rate was observed for PT (8/27) than for NT (9/9) and FT pigs (11/11). PT pigs had higher macroscopic gross ( P < 0.05) and histological NEC ( P < 0.05) scores and iFABP concentration ( P < 0.05) than pigs of more advanced gestational age. PT pigs had lower citrulline production and arginine fluxes ( P < 0.05) throughout and a reduced gene expression in genes of the citrulline-arginine pathway. In summary, intestinal enzyme expression and whole body citrulline and arginine fluxes were reduced in PT pigs compared with animals of more advance gestational age and preceded the development of NEC. NEW & NOTEWORTHY Arginine supplementation prevents necrotizing enterocolitis (NEC), the most common gastrointestinal emergency of prematurity. Citrulline (precursor for arginine) production is reduced during NEC, and this is believed to be a consequence of intestinal damage. In a swine model of NEC, we show that intestinal gene expression of the enzymes for citrulline production and whole body citrulline and arginine fluxes are reduced and precede the onset of NEC in premature pigs. Reduced citrulline production during prematurity may be a predisposition to NEC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call