Abstract

Childhood concussion may interfere with neurodevelopment and influence cognition. Females are more likely to experience persistent symptoms after concussion, yet the sex-specific impact of concussion on brain microstructure in children is understudied. This study examined white matter and cortical microstructure, based on neurite density (ND) from diffusion-weighted MRI, in 9-to-10-year-old children in the Adolescent Brain Cognitive Development Study with (n = 336) and without (n = 7368) a history of concussion, and its relationship with cognitive performance. Multivariate regression was used to investigate relationships between ND and group, sex, and age in deep and superficial white matter, subcortical structures, and cortex. Partial least square correlation was performed to identify associations between ND and performance on NIH Toolbox tasks in children with concussion. All tissue types demonstrated higher ND with age, reflecting brain maturation. Group comparisons revealed higher ND in deep and superficial white matter in females with concussion. In female but not male children with concussion, there were significant associations between ND and performance on cognitive tests. These results demonstrate a greater long-term impact of childhood concussion on white matter microstructure in females compared to males that is associated with cognitive function. The increase in ND in females may reflect premature white matter maturation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call