Abstract

The development of hematopoietic neoplasms is often associated with mutations, altered gene expression or chromosomal translocations. Recently, the t(5, 9)(q33;q22) translocation was found in a subset of peripheral T cell lymphomas and was shown to result in an IL-2-inducible kinase-spleen tyrosine kinase (ITK-Syk) fusion transcript. In this study, we show that T cell-specific expression of the ITK-Syk oncogene in mice leads to an early onset and aggressive polyclonal T cell lymphoproliferation with concomitant B cell expansion and systemic inflammation by 7-9 wk of age. Because this phenotype is strikingly different from previous work showing that ITK-Syk expression causes clonal T cell lymphoma by 20-27 wk of age, we investigated the underlying molecular mechanism in more detail. We show that the reason for the severe phenotype is the lack of B-lymphocyte-induced maturation protein-1 (Blimp-1) induction by low ITK-Syk expression. In contrast, high ITK-Syk oncogene expression induces terminal T cell differentiation in the thymus by activating Blimp-1, thereby leading to elimination of oncogene-expressing cells early in development. Our data suggest that terminal differentiation is an important mechanism to prevent oncogene-expressing cells from malignant transformation, as high ITK-Syk oncogene activity induces cell elimination. Accordingly, for transformation, a specific amount of oncogene is required, or alternatively, the induction of terminal differentiation is defective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.