Abstract

SMAD4 is a central component of the TGFbeta superfamily signaling pathway. Within the ovary, TGFbeta-related proteins play crucial roles in controlling granulosa cell growth, differentiation, and steroidogenesis. To study the in vivo roles of SMAD4 during follicle development, we generated an ovarian conditional knockout of Smad4 using the cre/loxP recombination system. Smad4 ovarian-specific knockout mice are subfertile with decreasing fertility over time and multiple defects in folliculogenesis. Regulation of steroidogenesis is disrupted in the Smad4 conditional knockout, leading to increased levels of serum progesterone. In addition, severe cumulus cell defects are present both in vivo and when assayed in vitro. These findings demonstrate that disrupting signaling through SMAD4 in the ovarian granulosa cells leads to premature luteinization of granulosa cells and eventually premature ovarian failure, thereby demonstrating key in vivo roles of TGFbeta superfamily signaling in the timing of granulosa cell differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.